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SHORT COMMUNICATION

Systemic alkalinisation delays prostate cancer cell progression in TRAMP mice

Simonetta Astigianoa, Andrea Puglisib, Luca Mastraccia,c, Stefano Faisd and Ottavia Barbieria,b

aIRCCS A.O.U. S. Martino-IST University Hospital, Genova, Italy; bDepartment of Experimental Medicine, University of Genova, Genova, Italy;
cDepartment of Surgical and Diagnostic Science, University of Genova, Genova, Italy; dDepartment of Therapeutic Research and Medicines
Evaluation, Istituto Superiore di Sanit�a (National Institute of Health), Roma, Italy

ABSTRACT
The microenvironment of solid tumours is extremely acidic and this condition arises since the precancer-
ous stage. This acidic milieu could therefore provide a useful target for both prophylactic and therapeutic
approaches. In TRAMP transgenic mice, an in vivo model of prostate adenocarcinoma (AC), oral administra-
tion of alkaline water was devoid of unwanted side effects, and when started from an early age was as
effective as NaHCO3 in significantly delaying tumour progression, while when started when prostate
tumours were already present, a nonstatistically significant trend in the same direction was detected.
These findings indicate that the use of alkalinizing drugs should be considered for chemoprevention and,
in association with standard chemotherapy, for treatment of human prostate AC.
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Introduction

During tumour development, the microenvironment becomes pro-
gressively acidic due to different and often concomitant mecha-
nisms: local hypoxia resulting from poor blood perfusion,
increased flux of carbons through fermentative glycolysis, and the
release by cancer cells of lysosome content into the extracellular
matrix (ECM)1–3. Indeed, extracellular acidosis in human solid
tumours can reach pH values as low as 6.5. Likely, adaptation of
cancer cells to an acid microenvironment occurs early during can-
cer progression, as pre-cancer cells undergo a metabolic switch in
ATP generation, from oxidative phosphorylation to glycolysis.
Since the latter pathway provides a much lower energy gain,
transformed cells greatly increase their glucose uptake to meet
their amplified metabolic requirements, resulting in intracellular
lactate accumulation and the excretion of Hþ by proton transport-
ers4, causing progressive acidification of the extracellular milieu.
This acidified habitat supports cancer cells with a stabilized glyco-
lytic phenotype, which in turn leads to sustained generation of
metabolic acids, even in well-oxygenated conditions, and to selec-
tion of cancer cells resistant to acid-mediated apoptosis5. It has
been hypothesised that these mechanisms lead to a competitive
advantage of cancer cells toward normal bystander cells that can-
not survive in an increasingly acidic microenvironment1,2. Besides
being toxic to normal cells, acidosis can stimulate invasion and
metastatization by degrading and remodelling the ECM, increasing
angiogenesis through the release of vascular endothelial growth
factor, and inhibiting the immune response1,5–10.

It is likely that targeting the driver functions that confer select-
ive advantages to tumour cells can be a suitable alternative
approach for cancer therapy. The reversal of pH gradient in cancer
cells is increasingly considered as a hallmark of virtually all can-
cers, and a potential target for new anti-tumours therapies11. In
particular, alkalinizing treatment with existing molecules such as
proton pump inhibitors (PPIs) and buffers, such as NaHCO3, citrate

or TRIS has been a proposed for human therapy2. This approach
has been supported by a clinical study on companion animals
with spontaneous tumours in which the PPI lansoprazole, adminis-
tered at high dose and combined with a water alkalizer, has pro-
ven effective in enhancing tumour response to metronomic
chemotherapy12, and by two clinical trials, in either osteosar-
coma13 or metastatic breast cancer patients14, where the adminis-
tration of the PPI esomeprazole either improved the local effect of
neoadjuvant chemotherapy or prolonged the time to progression
and the overall survival rate in treated patients. Coming to the
effect of alkalizer agents as monotherapy, it has been demon-
strated that treatments with NaHCO3 or lysine inhibit human
mammary and prostate metastases, respectively, in mouse xeno-
graft models15,16, while the oral administration of a commercially
available water alkalizer significantly reduced tumour growth in a
syngeneic melanoma mouse model17. However these results
should be confirmed in a more physiological model, i.e. in trans-
genic animals spontaneously developing tumours.

TRAMP mice are the best model available so far for pharma-
ceutical studies on prostate carcinoma, since 100% of these ani-
mals display spontaneous multistage prostate carcinogenesis, with
histological and molecular features similar to those present in
human prostate cancer18,19. Not surprisingly, the TRAMP model
has been used to successfully test the chemopreventive efficacy of
several natural anticancer agents such as green tea, grape, garlic,
cabbage, tomato, hop20–26. The efficacy of microenvironment alka-
lization in such a model was assessed by Ibrahim-Hashim and
co-authors. They found that NaHCO3 in drinking water prevented
the onset of prostate cancer in transgenic TRAMP mice, albeit it
was ineffective in treating established tumours27. Despite this
excellent proof-of-principle demonstration, the authors themselves
correctly stated that the administration of this regimen to humans
would be unadvisable, due to the unwanted side effects resulting
from sustained intake of high doses of NaHCO3. Moreover, sodium
bicarbonate cannot be considered the ideal buffer for tumour
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treatment and prevention for many reasons. First, NaHCO3 is not a
potent buffer molecule inasmuch as it can reach no more than pH
8.5 in a water solution. Moreover, it is unbalanced in term of elec-
trolyte equilibrium, containing exclusively Naþ, and therefore
exposing to potential side effects in prolonged treatment regimens,
including cardiovascular and renal dysfunctions. Lastly, at the con-
centration proposed in the Ibrahim-Hashim’s paper it would result
disgusting when used for oral administration, independently from
the disease condition. We have therefore tested in the same TRAMP
model, the anti-tumour effect of a water alkalinizer (AlkaWaterVR )
through which the best pH condition can be reached in water solu-
tion (from pH 9.0 to 10.0) depending on the tumour and systemic
pH; moreover, the taste of alkalinized water is comparable to that
of either tap and mineral water and the solution is balanced in
terms of electrolytes, containing Naþ, Kþ, Caþ and Mgþ. The results
have shown that the administration of alkaline water was devoid of
any unwanted side effects, and when started from an early age was
as effective as NaHCO3, significantly delaying tumour progression,
while when started when prostate tumours were already present
showed a trend in the same direction.

Materials and methods

Cell culture and reagent

Tramp C1 prostate carcinoma cell lines (ATCC, Rockville, MD) were
cultured in DMEM containing 10% FCS, glutamine and penicillin/
streptavidin.

The alkaline stock solution contained NaCl and KOH
(AlkaWaterVR ) and was diluted 1:1000 in tap water to obtain a
drinking solution at pH 9.5, and 1:300 for a solution at pH 10.5.

NaHCO3 was dissolved in tap water at the concentration of
200mM, as previously described27.

Animals and anti-acid treatment

Animal studies and research protocols were reviewed and
approved by the Ethics Committee of the IRCCS San Martino-IST
and were conducted in accordance with the current Italian regula-
tions and guidelines for the care and use of laboratory animals
(D.L. 26/2014).

For in vivo studies, we used two different models, the spontan-
eous prostate tumour model developing in the transgenic TRAMP
mice and xenograft model with TRAMP C1 cells.

TRAMP mice were maintained in heterozygosity by crossing
C57Bl/6 TRAMP females with C57Bl/6 wild type males (Charles
River Laboratories, Calco, Italy), and transgene verification was car-
ried out when newborn mice reached 3 weeks of age using DNA
obtained from tail clipping as previously described19. Transgene-
positive mice were then randomly divided into four groups, each
supplied with different types of water: the “control” group of 30
mice was administered with tap water; the “prevention” group of
59 mice with alkaline water at pH 9.5, starting at 4 weeks of age;
the “therapy” group of 37 mice with alkaline water at pH 10.5,
starting at 12 weeks of age; the “bicarbonate” group of 34 mice
with NaHCO3, starting at 4 weeks of age. These time points were
chosen accordingly with the progression of cancer in TRAMP mice,
where high grade prostatic intraepithelial neoplasia (PIN) or well-
differentiated prostate cancer is present in 10–12 weeks of age18.
All animals were monitored daily for signs of suffering and, start-
ing from 20 weeks of age, were checked by palpation for the
development of precocious neuroendocrine tumours. Twenty-six
percent of TRAMP mice of all groups displayed rapidly growing and

very aggressive poorly differentiated neuroendocrine tumours that
developed very early (24–29 weeks of age) respect to our chosen
end point (32 weeks of age). These animals were not considered in
our analysis, since these tumours are not comparable to the human
pathology, their growth arise independently from atypical hyperpla-
sia or other epithelial lesions28 and represent an extremely rare and
advanced stage of carcinomas29. We instead took into the account
neuroendocrine tumours that develop later, as consequence of sto-
chastic events related to malignant progression30. Throughout the
experiment, mice were fed with food and water ad libitum and
water consumption was recorded. Mice were sacrificed by CO2

inhalation at 32 weeks of age and subjected to accurate necropsy.
Body weight (bw) was registered before sacrifice. The entire uro-
genital (UG) apparatus, consisting of emptied bladder, urethra, sem-
inal vesicles, testes and prostate was excised and weighed. The
ratio between UG and bw (UG/bw) was then calculated. Seminal
vesicles and testes were then removed and the prostate was fixed
in 4% neutral buffered formalin and processed for histology and
immunohistochemistry. Bladder was maintained to orient samples
during embedding, so that sectioning was done starting from the
dorsal part.

For the xenograft model, six 6-week-old C57/Bl6 male mice
(Charles River Laboratories, Calco, Italy) were injected subcutane-
ously (s.c.) in the right flank with 6� 106 TRAMP C1 cells suspended
in 0.1ml of PBS, a dose that is tumorigenic in 100% of syngeneic
animals31. The animals were then randomly divided into two
groups and either fed with pH 9.5 alkaline water, or with regular
tap water. The mice were then regularly palpated to assess tumour
latency. Tumour growth was recorded measuring nodule size with
a calliper three times a week; when a nodule reached the size of
250mm3, all animals were sacrificed and tumours were excised,
measured, weighed and formalin fixed for further analyses.

Histology and immunohistochemical analysis

For histology and immunohistochemistry analysis, samples were
fixed in 4% neutral buffered formalin, embedded in paraffin and
cut to obtain 3–4lm thick sections. Slides were then either
stained with haematoxylin and eosin (H&E) for pathological ana-
lysis or processed for immunohistochemistry. All the evaluations
were done in blind and scored independently by two investiga-
tors. Samples were examined for the presence of low or high
grade PIN, well-differentiated adenocarcinoma (AC), phyllodes-like
tumour (PHY) and neuroendocrine tumour (NE)19,30.

Immunohistochemistry was performed using rabbit monoclonal
anti-Ki67 or rabbit polyclonal anti-CD3 (Abcam, Cambridge, UK).
Primary antibodies were diluted 1:150 and 1:100 respectively in
PBS containing 0.1%Tween20 and 1%BSA, and incubated for 1 h at
RT. After washing, the slides were incubated with a biotinylated
anti-rabbit secondary antibody (Pierce, Thermo Fisher Scientific,
Waltham, MA) followed by peroxidase-conjugated streptavidin
(BioSPA Biochemical, Milano, Italy). Samples were then stained
using the Vectastain DAB Kit (Vector Laboratories, Burlingame, CA).
To quantify proliferation, five randomly selected fields on each
H&E-stained sections, from four different animals, were blindly
photographed, with an oil-immersion 100� objective. Positive
nuclei were counted and expressed as percentage of the total
nuclei present in each field.

Statistical analysis

All statistical analyses were done with the IBM SPSS Statistic
Software version 20 or 2� 2 contingency table calculator (http://
vassarstats.net/tab2x2.html).
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Results

Alkaline water administration delays prostate AC progression in
TRAMP mice

To evaluate toxicity of the treatment, we initially administered
alkaline water at pH 10.5 to 5 C57/Bl6 male mice for two months,
and looked for signs of toxicity in terms of pain, suffering or dis-
tress. In particular, we monitored behavioural signs and found no
changes in posture, gait, activity and interactions with the environ-
ment. Moreover, we found no alteration in clinical signs, such as
coat condition, nasal or ocular discharge, swollen eyes, increased
respiratory rate, dyspnoea, tremors, excessive urination and con-
sistency of faeces. Similarly, we did not register any significant dif-
ference in bw when treated mice were compared with control
mice receiving tap water. At the time of necropsy, we macroscop-
ically checked internal organs, with particular attention to liver
and kidneys. No sign of toxicity was found (data not shown).

Afterward, we started to assess the therapeutic effect of alka-
line water administration. Water consumption varied among the
groups, with the NaHCO3-treated animals that doubled their
intake (13.2 ± 1.47ml/day/animal), compared to control group
(7.25 ± 0.43ml/day/animal). Conversely, the water intake for both
the “prevention” and “therapy” groups was slightly lower
(5.8 ± 1.12ml/day/animal and 5.2 ± 0.66, respectively).

At the established experimental end point (32 weeks of age),
we sacrificed and thoroughly necropsied all animals. We found no
animals with evidence of oedema or abnormal organ size, in tar-
get and non-target organs, however we observed hydronephroses
in 11 out of the 29 (38%) animals fed with NaHCO3.

The animals in the “prevention” group displayed a significant
(p¼ .017) decrease in UG/bw, with respect to the animals in the
“control” group, while no difference with the “control” group was
found in the animals belonging to the “therapy” group (p¼ .26);
the mice in the “bicarbonate” group showed a sharp decrease in
the UG/bw ratio with respect to controls (p¼ .001) (Figure 1).

All collected tumours were then examined for both histological
and immunohistochemical analyses. Tissue sections, stained with
H&E, were evaluated in a blind assay by two different researchers.
In order to evaluate the progression of the disease, we recorded
the different type of lesions found on each slide (Figure 2).

Overall tumour incidence was 100% in all groups but compari-
son between “control” and “prevention” groups demonstrated that
our treatment produced a decrease in the incidence of high grade
PIN from 83 to 29.5% (p¼ .001), and a corresponding increase in
the incidence of low grade PIN from 4.17 to 36.4% (p¼ .001)
(Figure 3(a)). Also the administration of alkaline water with the

“therapy” scheme affected PIN progression, and albeit statistical
significance was not achieved, there was a clear reduction in the
high to low PIN ratio, as compared to the “control” group
(Figure 3(b)). The “bicarbonate” group, showed a significant
decrease, with respect to “control” group, in the incidence of
high grade PIN (from 83 to 52% p¼ .020), and a corresponding
increase in the incidence of low grade PIN (from 4.17 to 44%
p¼ .01).

As it regards AC incidence, we found with respect to “control”
group, a reduction of 12.8% in the “prevention” group, of 46.7% in
the “therapy” group and of 61.6% in the “bicarbonate” group.

We detected no statistically significant difference in PHY or NE
incidence among the groups.

Immunohistochemical analyses evidenced no changes in
tumour cell proliferation, measured by Ki67 staining, as well as in
the distribution and amount of tumour infiltrating T cells between
treated group and controls (data not shown).

Alkaline water administration delays tumour growth in
xenotransplants of an androgen independent prostate cancer
cell line

C57/Bl6 wild type male mice injected s.c. with TRAMP C1 syngen-
eic cells, were randomly divided into two groups that received
either tap water or alkaline water at pH 9.5, and tumour growth
was monitored (Figure 4). The growth of tumour nodules in
treated mice was delayed respect to control mice. The delay was
statistically significant till day 14 from cell injection (p¼ .018,
p¼ .001 and p¼ .017 for day 10, 12 and 14 respectively). From
day 17, the difference became not statistically significant, due to
increase in standard error. Histology on tumours collected from
the mice at the end of experiment, showed no differences in the
histological types between the two groups (data not shown). Also,
immunohistochemistry did not show any difference in tumour cell
proliferation and tumour infiltration by T cells between the two
groups (data not shown).

Discussion

The effect of alkaline water treatment confirms that the alkalinisa-
tion of the microenvironment has a prophylactic effect on prostate
cancer progression, as already observed by Ibrahim-Hashim et al.27

with NaHCO3 using a small number of animals. We have followed
this therapeutic strategy in a much larger cohort of mice and also
using a different alkalinizing agent. We have found that oral
administration of alkaline water or NaHCO3 to TRAMP mice, begin-
ning at four weeks of age, are equal in inducing a delay in the
progression of prostate AC, with reduction in the incidence over
time of both high grade PIN and AC. Confirming previous results
with NaHCO3, both the alkalinizing agents we tested the induced
growing tumours to retain a more differentiated low grade PIN for
longer.

However, the preventive treatment with alkaline water has the
advantage to be devoid of the long-term unwanted side effects of
a high dose NaHCO3. As a matter of fact, we have found hydro-
nephrosis in a significant percentage of NaHCO3-treated mice. In
these animals, an excess of water intake was also detected, sug-
gesting possible long-term impact on blood pressure, and on car-
diac and renal function. Instead, no tissue or organ impairment
was detected in the two groups of mice treated with alkaline
water. Indeed, the administration of high dose of NaHCO3 regi-
mens to humans would be unadvisable27, making alkaline water a
safer alternative.
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Figure 1. Administration of alkaline water to TRAMP mice reduces UG tract
weight. The ratio between UG and bw in the different experimental groups is
shown. Mean± S.E. �p¼ .017; ��p¼ .001.
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The effect of the “therapy” scheme was less significant, how-
ever, there was a clear trend toward a delay in PIN progression
and a reduction in AC incidence. This conclusion is supported by
the results obtained with xenografts, a model of early tumour,
which showed that alkaline water treatment delays tumour
growth. These results are comparable to those obtained with
NaHCO3 treatments in a mouse model of mammary tumour3.
These findings are encouraging, since no therapeutic effect was
detected when NaHCO3 was administered to TRAMP mice with
the same scheme27.

It is of note that PHY tumours and NE tumours did not respond
to the alkalinizing treatments. It remains to be elucidated whether
these tumours do not rely on an acidic microenvironment for their
growth, or if they have escape mechanisms that allow them to
counter the effect of alkalinizing agents. However, the prostate

High grade PINLowgrade PIN Adenocarcinoma

Neuroendocrine carcinomaPhyllodes-like tumour

Figure 2. Histological classification of tumour lesions. Examples of the different histological types are provided. Bar ¼20lm.
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tumours in humans are almost all ACs, the NE tumour accounting
for about 4% of the total29 and the PHY tumours of the prostate
being very rare32, therefore alkaline water may be considered a
promising low-cost therapeutic approach that should be taken
into account for prophylaxis and, combined with standard chemo-
therapy, for treatment of human prostate cancer. The few clinical
trials available to date suggest that the anti-acidic/alkalinizing
approach may well represent an efficient way to implement the
existing anticancer therapies33,34.
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